Create Signal Space Projectors🔗

Important

This example requires the meg_wiki package to download the sample dataset. This package can be installed with pip:

$ pip install git+https://github.com/fcbg-platforms/meg-wiki

Background on projection🔗

Signal-Space Projection (SSP)[1] is a way of estimating a projection matrix to remove noise from a recording by comparing measurements with and without the signal of interest. An empty-room recording is typically used to estimate the direction(s) of environmental noise in sensor space. Once the noise vector(s) are known, you can create an orthogonal hyperplane and construct a projection matrix to project your recording onto that hyperplane. It should be clear that SSP reduces the dimensionality of your data and thus sensors will not retain linear independency.

Additional information on projections and on Signal-Space Projection (SSP) can be found in MNE’s background on projectors and projections.

MNE’s Python geometric example projecting from 3-dimensional space to the (x, y) plane:

import numpy as np
from matplotlib import pyplot as plt

ax = plt.axes(projection="3d")
ax.view_init(azim=-105, elev=20)
ax.set(xlabel="x", ylabel="y", zlabel="z", xlim=(-1, 5), ylim=(-1, 5), zlim=(0, 5))

# plot the vector (3, 2, 5)
origin = np.zeros((3, 1))
point = np.array([[3, 2, 5]]).T
vector = np.hstack([origin, point])
ax.plot(*vector, color="k")
ax.plot(*point, color="k", marker="o")

# project the vector onto the x,y plane and plot it
xy_projection_matrix = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 0]])
projected_point = xy_projection_matrix @ point
projected_vector = xy_projection_matrix @ vector
ax.plot(*projected_vector, color="C0")
ax.plot(*projected_point, color="C0", marker="o")

# add dashed arrow showing projection
arrow_coords = np.concatenate([point, projected_point - point]).flatten()
ax.quiver3D(
    *arrow_coords,
    length=0.96,
    arrow_length_ratio=0.1,
    color="C1",
    linewidth=1,
    linestyle="dashed",
)
plt.show()
00 signal space projection

Default projectors🔗

The default set of projectors is available on our GitHub. Those projectors were obtained by combining projectors from the wideband PCA and from the narrowband PCA (bandpass filter between 15 and 18 Hz). The narrowband PCA improves the correction of the 16.7 Hz artifact, typical from a 15 kV AC railway electrification system.

Let’s have a look at the projectors in 68° position when IAS is disabled.

from mne import read_proj

from meg_wiki.datasets import sample

projs = read_proj(sample.data_path() / "ssp" / "200123" / "ssp_68_200123_proj.fif")
Read a total of 14 projection items:
    ssp_68_magn.fif : PCA-v1 (1 x 306)  idle
    ssp_68_magn.fif : PCA-v2 (1 x 306)  idle
    ssp_68_magn.fif : PCA-v3 (1 x 306)  idle
    ssp_68_magn.fif : PCA-v4 (1 x 306)  idle
    ssp_68_magn.fif : PCA-v5 (1 x 306)  idle
    ssp_68_magn.fif : PCA-v6 (1 x 306)  idle
    ssp_68_magn.fif : PCA-v1 (1 x 306)  idle
    ssp_68_magn.fif : PCA-v2 (1 x 306)  idle
    ssp_68_magn.fif : PCA-v3 (1 x 306)  idle
    ssp_68_grad.fif : PCA-v1 (1 x 306)  idle
    ssp_68_grad.fif : PCA-v2 (1 x 306)  idle
    ssp_68_grad.fif : PCA-v3 (1 x 306)  idle
    ssp_68_grad.fif : PCA-v1 (1 x 306)  idle
    ssp_68_grad.fif : PCA-v2 (1 x 306)  idle

To visualize the projector as topographic maps, we need information about the sensors location and orientation. Those information are stored in every raw recording.

from mne.io import read_info

info = read_info(
    sample.data_path() / "meas_info" / "measurement-info.fif", verbose=False
)
info
General
MNE object type Info
Measurement date 2000-01-01 at 00:00:00 UTC
Participant
Experimenter mne_anonymize
Acquisition
Sampling frequency 1000.00 Hz
Channels
Magnetometers
Gradiometers
Head & sensor digitization Not available
Filters
Highpass 0.10 Hz
Lowpass 330.00 Hz
Projections ssp_68_magn.fif : PCA-v1 (off)
ssp_68_magn.fif : PCA-v2 (off)
ssp_68_magn.fif : PCA-v3 (off)
ssp_68_magn.fif : PCA-v4 (off)
ssp_68_magn.fif : PCA-v5 (off)
ssp_68_magn.fif : PCA-v6 (off)
ssp_68_magn.fif : PCA-v1 (off)
ssp_68_magn.fif : PCA-v2 (off)
ssp_68_magn.fif : PCA-v3 (off)
ssp_68_grad.fif : PCA-v1 (off)
ssp_68_grad.fif : PCA-v2 (off)
ssp_68_grad.fif : PCA-v3 (off)
ssp_68_grad.fif : PCA-v1 (off)
ssp_68_grad.fif : PCA-v2 (off)


from matplotlib import pyplot as plt

f, ax = plt.subplots(2, 3, figsize=(6, 6))
for k, proj in enumerate(projs[0:6]):
    proj.plot_topomap(info, axes=ax[k // 3, k % 3])
    ax[k // 3, k % 3].set_title(f"PCA-v{k+1}")
plt.suptitle("Magnetometers - Wideband PCA")

f, ax = plt.subplots(1, 3, figsize=(6, 6))
for k, proj in enumerate(projs[6:9]):
    proj.plot_topomap(info, axes=ax[k])
    ax[k].set_title(f"PCA-v{k+1}")
plt.suptitle("Magnetometers - Narrowband PCA")
plt.show()
  • Magnetometers - Wideband PCA, PCA-v1, PCA-v2, PCA-v3, PCA-v4, PCA-v5, PCA-v6
  • Magnetometers - Narrowband PCA, PCA-v1, PCA-v2, PCA-v3
from matplotlib import pyplot as plt

f, ax = plt.subplots(1, 3, figsize=(6, 6))
for k, proj in enumerate(projs[9:12]):
    proj.plot_topomap(info, axes=ax[k])
    ax[k].set_title(f"PCA-v{k+1}")
plt.suptitle("Gradiometers - Wideband PCA")

f, ax = plt.subplots(1, 2, figsize=(6, 6))
for k, proj in enumerate(projs[12:14]):
    proj.plot_topomap(info, axes=ax[k])
    ax[k].set_title(f"PCA-v{k+1}")
plt.suptitle("Gradiometers - Narrowband PCA")
plt.show()
  • Gradiometers - Wideband PCA, PCA-v1, PCA-v2, PCA-v3
  • Gradiometers - Narrowband PCA, PCA-v1, PCA-v2

Empty room recording🔗

Projectors are determined from an empty-room recording. They are specific to a gantry position (up-right 68°, up-right 60°, supine 0°) and to an Internal Active Shielding (IAS) state (ON or OFF). The empty-room recording loaded below was measured with the gantry in the 68° position and with IAS disabled.

from mne.io import read_raw_fif

raw = read_raw_fif(
    sample.data_path() / "empty-room" / "empty-room-raw.fif", verbose=False
)
raw.del_proj("all")  # remove the default projectors
raw.info["bads"] = ["MEG1343"]  # bad channel with flux jumps

Noise level🔗

The power spectral density can be used to visualize the noise level. See Khan and Cohen[2] and this MNE-Python example for additional information.

raw.compute_psd(verbose=False).plot(
    average=True,
    spatial_colors=False,
    dB=False,
    xscale="log",
    picks="data",
    exclude="bads",
)
plt.show()
Gradiometers, Magnetometers
Plotting power spectral density (dB=False).

References🔗

Total running time of the script: (0 minutes 9.628 seconds)

Estimated memory usage: 1061 MB

Gallery generated by Sphinx-Gallery